Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors.

نویسندگان

  • G M Cahill
  • J C Besharse
چکیده

A circadian oscillator is located within the eye of Xenopus laevis. This oscillator regulates retinal melatonin synthesis, stimulating it at night. The primary goal of the studies reported here was to define input pathways to this circadian oscillator as a step toward identification of circadian clock mechanisms. A flow-through superfusion culture system was developed to monitor circadian rhythms of melatonin release from individual eyecups. This system was used to determine the effects of light and dopaminergic agents on melatonin production and on the phase of the circadian oscillator. Six hour light pulses suppressed melatonin production and reset the phase of the free-running melatonin rhythm. Light pulses caused phase delays when applied during the early subjective night, phase advances when applied during the late subjective night, and no phase shift when applied during the subjective day. Dopamine receptor agonists mimicked light in suppressing melatonin release and resetting the phase of the circadian rhythm. The phase-response relationship for phase shifts induced by quinpirole, a D2 dopamine receptor agonist, was similar to that for phase shifts induced by light. Pharmacological analysis with selective catecholamine receptor agonists and antagonists indicated that there are pathways to the melatonin-generating system and the circadian oscillator that include D2 dopamine receptors. A D2 receptor antagonist, eticlopride, completely blocked the effects of dopamine on melatonin release and on circadian phase. However, eticlopride did not alter similar effects induced by light, indicating that dopamine-independent pathways exist for light input to these systems. The effects of light and quinpirole on melatonin release and circadian phase were not additive, indicating that the pathways converge. These pathways to the circadian oscillator in the retina present new avenues for pursuit of cellular circadian clock mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symphony of rhythms in the Xenopus laevis retina.

The photoreceptor layer in the retina of Xenopus laevis harbors a circadian clock. Many molecular components known to drive the molecular clock in other organisms have been identified in Xenopus, such as XClock, Xper2, and Xcrys, demonstrating phylogenetic conservation. This model system displays a wide array of rhythms, including melatonin release, ERG rhythms, and retinomotor movements, sugge...

متن کامل

An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA

The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protoco...

متن کامل

Retinal melatonin is metabolized within the eye of xenopus laevis.

Retinal synthesis of melatonin, a potent modulator of rhythmic retinal processes, is elevated at night as a result of regulation by a circadian clock. Despite high nocturnal synthetic capacity, both melatonin content and release are low in the retina of the frog Xenopus laevis. We report here that cultured eyecups from Xenopus have the capacity for rapid metabolic breakdown of melatonin. Pharma...

متن کامل

Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length

In lower vertebrates, cone retinomotor movements occur in response to changes in lighting conditions and to an endogenous circadian clock. In the light, cone myoids contract, while in the dark, they elongate. In order to test the hypothesis that melatonin and dopamine may be involved in the regulation of cone movement, we have used an in vitro eyecup preparation from Xenopus laevis that sustain...

متن کامل

Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine.

A circadian clock is located in the retinal photoreceptors of the African clawed frog Xenopus laevis. These photoreceptor clocks are thought to govern a wide variety of output rhythms, including melatonin release and gene expression. Both light and dopamine phase shift the retinal clock in a phase-dependent manner. Two homologs of the Drosophila period gene have been cloned in Xenopus, and one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 1991